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• Adversarial nets

1) Global Optimality of datag pp =

2) Convergence of Algorithm

D GVs

x

)(xpdata

“Generative Adversarial Networks”

Goal Method
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• Introduction

* Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint
arXiv:1511.06434 (2015).

*

“I have the strongest MLP army.”

“I have too.”G
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• Introduction

*

D
G

“What are they doing?”

“We have a better CNN than MLP”
D“I have the strongest MLP army.”

“I have too.”G
Vanilla GAN DCGAN

* Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint
arXiv:1511.06434 (2015).
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• Contributions

Generating Natural 
Image

Deep Convolutional 
GANs

Image Classification 
using DFilter Visualization

Vector arithmetic 
properties



Z“I’m very Important”

Who am I?

Black box RealD
A

B

C

DCGAN
2019-04-09

8

• Contributions

Generating Natural 
Image

Deep Convolutional 
GANs

Image Classification 
using DFilter Visualization

Vector arithmetic 
properties
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• Approach and Model Architecture

Replace any pooling layers with strided convolutions (discriminator) and fractional-
strided convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use ReLU activation in generator for all layers except for the output, which uses
Tanh.

Use LeakyReLU activation in the discriminator for all layers.
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• Approach and Model Architecture

Strided Convolution Fractional Convolution(Transposed Convolution)
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• Approach and Model Architecture

Batch Normalization

Except for these layers.

Output layer of Generator
Input layer of Discriminator
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• Approach and Model Architecture

No fully connected layer

Classical CNN

GAP(Global Average Pooling)

http://nmhkahn.github.io/Casestudy-CNN

http://nmhkahn.github.io/Casestudy-CNN
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• Approach and Model Architecture

No fully connected layer

https://raw.githubusercontent.com/znxlwm/pytorch-MNIST-CelebA-GAN-DCGAN/master/pytorch_DCGAN.png

https://raw.githubusercontent.com/znxlwm/pytorch-MNIST-CelebA-GAN-DCGAN/master/pytorch_DCGAN.png
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• Approach and Model Architecture

ReLU, Tanh, LeakyReLU

http://gmelli.org/RKB/Rectified_Linear_Unit_(ReLU)_Activation_Function

Generator : ReLU, Tanh

Discriminator : LeakyReLu , Sigmoid

http://gmelli.org/RKB/Rectified_Linear_Unit_(ReLU)_Activation_Function
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• Details of Adversarial Training

• Mini-batch stochastic gradient descent(SGD); mini-batch size of 128

• All weights initialized from a zero-centered Normal distribution with standard deviation 0.02

• Leaky slope 0.2

• Adam optimizer; lr =0.0002, beta1 = 0.9, beta2 = 0.5
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• Details of Adversarial Training

LSUN dataset

1 epoch
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• Details of Adversarial Training

LSUN dataset

5 epochs
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• Empirical Validation of DCGANs Capabilities

• CIFAR-10
• Classification
• Domain robustness
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• Empirical Validation of DCGANs Capabilities

SVHN(Street View House Numbers) dataset
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• Investigating and Visualizing The Internals of The Networks

Walking in the latent space
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• Investigating and Visualizing The Internals of The Networks(cont.)

Visualizing the discriminator features
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• Investigating and Visualizing The Internals of The Networks(cont.)

Forgetting to draw certain objects

in charge of windows in charge of beds

in charge of lamps in charge of doors…
Latent code Filters(Conv) Generation

1
0
0

Noise(z) YOU DIED
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• Investigating and Visualizing The Internals of The Networks(cont.)

Forgetting to draw certain objects
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• Investigating and Visualizing The Internals of The Networks(cont.)

Vector arithmetic on face samples
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• Investigating and Visualizing The Internals of The Networks(cont.)

Vector arithmetic on face samples
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• Investigating and Visualizing The Internals of The Networks(cont.)

Vector arithmetic on face samples
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• Investigating and Visualizing The Internals of The Networks(cont.)

Vector arithmetic on face samples
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https://github.com/messy-snail/GAN_PyTorch
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Ground Truth

Vanilla GAN : 

DCGAN : 

Epoch 1 Epoch 5 Epoch 100

Epoch 1 Epoch 5 Epoch 30

Still have this sample

Results are cherry picked
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Ground Truth

Vanilla GAN : 

DCGAN : 

Epoch 1 Epoch 5 Epoch 12

Epoch 1 Epoch 2 Epoch 5

Results are cherry picked
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• I used weights and biases 
generated by celebA learning.

• I wanted the effect of transfer 
learning but failed.

Maybe these factors
(Asian, cropping image)

Ground Truth Epoch 1 Epoch 2 Epoch 3

Epoch 4 Epoch 5 Epoch 6
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Ground Truth Epoch 1 Epoch 5 Epoch 30

Epoch 50 Epoch 100 Epoch 150

• 10000 images

Insufficient data set
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• Stable set of architectures for training generative adversarial networks

• Good representations of images for supervised learning and generative modeling

• Sometimes collapse a subset of filters to a single oscillating mode

• Latent code has a special meaning, not a simple noise component.

[Instability of GAN]
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Paper Review

Vanilla GAN

DCGAN

InfoGAN

Unrolled GAN

Wasserstein GAN

LS GAN

BEGAN

Pix2Pix

Cycle GAN

Proposed Model

SpyGAN

Tips

Document

Programming

Mathematical Study

Information theory

(working title)
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 Issue#1 Performance of VAE and GAN 

 Issue#2 Log likelihood

 Issue#3 Dimension of latent code

 Issue#4 Why manifold?

Durk Kingma

1. Adam: A Method for Stochastic Optimization
2. Auto-Encoding Variational Bayes

Machine Learning researcher at OpenAI

- Mathematically very difficult papers

Intuitive explanation

https://www.youtube.com/watch?v=o_peo6U7IRM
오토인코더의모든것

: I refer to this video

https://www.youtube.com/watch?v=o_peo6U7IRM
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“Compared to GAN, VAE is relatively blurred and I do not know why.”

“Cost function”

( )[ ] ( ))(||)|()(|log),,( )|( zpxzqKLzgxExL xzq φθφ
θφ +−=

),,(min xL θφVAE

),(maxmin DGV
DG

[ ] ( )( )( )[ ]zGDExDEDGV
zdata pzpx −+= 1log)(log),( ~~

GAN

Intuition

Reconstruction Error Regularization

≈ D Loss ≈ G Loss
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VAE Loss= Recon. Error + Regularization GAN Loss= G_Loss + D_Loss

E D

Recon. Error

D Real
Fake

1. Optimize

2. Image Quality

3. Generalization

VAE vs. GAN
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Question about log likelihood

“Summation and monotonically increasing”

MLE(Maximum Likelihood Estimation) : Unknown parameter estimation from observation

)|(maxargˆ θθ
θ

yp=

eg. Gaussian Distribution
Mean and Std

∏=
i

iyp )|(maxarg θ
θ

∑∏ =








i
i

i
i ypyp )|(logmaxarg)|(logmaxarg θθ

θθ

: monotonically 
increasing function1

Log(x)
cf.

∑
i

ixp )(logmaxarg θθ

Generation model 
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• Issue #3 Dimension of latent code 
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“Is the latent code dimension always small?”

“Yes”

AE, What’s this? Dimension reduction

E D

High Low

Interested

Sparse AE

FAILED
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What’s the manifold and Why explain the manifold?

“Concept of manifold and Difference of between AE and VAE”

High Low

Subspace
=Manifold

Concept of manifold

D

Purpose of AE : Manifold Learning

Purpose of AE and VAE

Assumption(manifold hypothesis)

Uniform 
sampling

E

Unsupervised Learning

D

Purpose of VAE : Generative Model

E

Unsupervised Learning

: Correlation between generation and manifold…
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Shape = {Size} torch.Size([128, 3, 32, 32])

Shape = {Size} torch.Size([128, 64, 16, 16])

Shape = {Size} torch.Size([128, 16384])3x32x32

CIFAR-10

Shape = {Size} torch.Size([128, 64, 109, 89])

Shape = {Size} torch.Size([128, 3, 218, 178])

Shape = {Size} torch.Size([128, 620864])

3x178x218

CelebA

Conv

Input

Pool

FC

Conv2d(in_ch, out_ch, k_size, s, p)

Reshape(bat_sz,-1)

Input size is not fixed.
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